
IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 4, April 2016 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2016.54127                                    511 

Efficient Framework for Secure Data Sharing 

With Key Aggregate Cryptosystem 
 

Pallavi Mathur
1
, Nachiket Mahamuni

2
, Nikhil Gondane

3
, Kaushal Singh

4 

Computer Department, DYPIET, Pune University (UoP), Pune, India
 1,2,3,4

 

 

Abstract: Cloud storage in simple terms is nothing but storing data on-line in cloud that can be accessed from multiple 

and connected resources. Using cloud to store the data is a very practical thought as we can share our information in 

trustworthy domain, with great efficiency, Besides that  it provides some other functionalities in terms of disaster 

recovery, smart accessibility etc. New public–key cryptography is presented that came out to be Key aggregate 

cryptosystem (KAC), in which constant size ciphertexts are produced in order to make the task of rendering the 

decryption rights feasible for produced mass of ciphertexts. KAC comprises the thought of integrating different keys 

generated for different sets of ciphertext which yields a single aggregate key accommodating power of all the keys. 

After which a single key can be released to someone in trusted domain through a secure channel and using this key one 

can decrypt set of allowed files only, others remaining unaddressed. 
 

Keywords: Cloud storage, Data sharing, Ciphertext, Key-aggregate, Encryption. 
 

I. INTRODUCTION 

 

Cloud storage has gained tremendous popularity now-a-

days of course due to functionality it provides. It stands to 

gain advantages over traditional ways of storing the 

information/data. Cloud storage is storing our personal, 

casual, or work related data off-site to the physical storage 

that is maintained by third party. Cloud storage is saving 

of digital information in logical pool and physical storage 

carrying loads on multiple servers that are manage by third 

party. Third party is liable for keeping, storing and 

maintaining information on the market. And accessible 

and physical atmosphere ought to be protected in runtime 

running in the slightest degree time. Instead of storing 

information to the disk drive or the other native storage, 

we tend to save information to remotely located storage 

devices which is accessible from anyplace and at any 

given point in time. It keeps from carrying physical 

devices everywhere you go. By exploitation cloud storage 

we can access data from any pc over the net that omitted 

limitation of accessing data from same pc where it's kept. 

While considering information (content) privacy and 

protection, resolution is to encipher information before 

uploading to the server with user‟s own key. And survey 

has shown that it is always a good practice to encrypt the 

personal information before uploading on a server as there 

could be many backdoors through which an intruder may 

hack into your data stored online. To understand let us 

assume an instance, organization might grant access rights 

to go and roam through a part of sensitive information to 

their staff. However difficult task is to share enciphered 

information securely. Traditional tactic is user will transfer 

the encrypted information from storage, decipher that 

information and send it to share with others; however it 

loses the importance of storing data on a cloud. 

 

Cryptography technique is applied in a very 2 major ways- 

one is even key cryptography and otherone is uneven key 

encryption.  

 

 

In even key cryptography, similar keys are used for 

cryptography and coding i.e. same key to encrypt and 

decrypt the knowledge. Against this, in uneven key 

encryption totally different keys are used, public key for 

cryptography and personal key for coding i.e. different 

keys for converting message to cipher and cipher to 

message back in its original format. 

 

Suppose Alice puts her all information on demo.com and 

she does not need to show her information to everybody. 

Thanks to information outpouring prospects she does not 

trust on privacy mechanism provided by demo.com, thus 

she encipher all information data before she uploads it on 

the server. If Bob ask her to share some information with 

him then Alice will encipher her files and will generate 

number of keys equals to no of files/docs. Its okay to 

employ this scheme for few no. of docs but suppose there 

are thousands of files then that many no of keys are to be 

produced. But using this way is very unrealistic as it is 

surely not feasible for her to handle this many no of keys. 

Besides this it needs to have more secure channel to hand 

over this many no. of keys. It increases cost of using 

resources and complexity. So there is a way to surmount 

this hurdle. As Alice encrypts no of files, secrete keys that 

are generated can be fused together to form an aggregate-

key.  This aggregate master key has the power of all the 

keys and can be used to decrypt multiple enciphered files 

at a time. This reduces cost of resources, no need to have 

secure channel to share the keys as there is going to be a 

single key to be deployed to. 

 

II. RELATED WORK 

 

In [2], authors states in electronic health records ,medical 

related services and health related service, providers 

uploads and updates patients record and when so ever they 

need to access their information or health related 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 4, April 2016 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2016.54127                                    512 

documents and other health data they can at any time. 

Besides that they can render their rights to decrypt the data 

to a guardian or friend so that they can access, retrieve, 

delete, and modify their records. Here they say a particular 

patient can generate his/her own decryption keys. But this 

altogether sounds somewhat risky and problematic as if 

access is granted then any one who has decryption rights 

(decryption key generated by patient himself) can delete or 

replace the information without having the idea of what 

type of file is getting modified. Hence one has to maintain 

different keys for different files in order to avoid this 

scenario. Hence no of keys will have to generate and that 

many no of keys will have to be deployed. 

 

M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, in 

“Dynamic and Efficient Key Management for Access 

Hierarchies,” ACM Transactions on Information and 

System Security; proposed tree based mechanism where 

classes are set in hierarchy according to its order. In this if 

a person gets access rights to access a particular class in 

hierarchy then he access the attributes of that particular 

class also he can access its descendant classes as well. 

Here the problem is spurt may be seen in no of keys as the 

branch in hierarchy grows.  

 

In [3], authors proposed: attribute based fine-grained 

access control as a way of encryption. Generally 

cryptographic methods are employed when there is need 

of sharing of important and sensitive information over the 

net. If one is to be given access rights then he must carry a 

private key in order to decrypt the data and hence the data 

owner has to release his private key this schema is known 

as coarse grained. This article proposed fine-grained 

schema with ABE. i.e. each set of message will have some 

attributes on which a private key can be mapped, which in 

turn restricts third party user from decrypting the 

information. 

The scheme proposed by the authors in [11], states: 

trustworthy key generator in IBE holds the master secrete 

key and discloses secrete keys to a particular user based on 

identity measures. Employing key-aggregation yields a 

system where encryptor accepts simple public parameter 

and user identity in order to cipher the data and a receiver 

will use his own secrete key to decrypt the ciphertext-set. 

But this may increase resource related expenses as storing 

and deploying secrete keys becomes expensive. 

 

Here in [4], a private key can be used to map multiple 

identities i.e. public keys. That means using various public 

keys one can encrypt multiple files of information and a 

private key is used to decrypt multiple cipher messages 

that can map multiple public keys encompassed with it. 

This schema increases efficiency and reduces efforts of 

producing multiple keys for multiple documents of 

information. 

 

III.  KEY-AGGREGATE ENCRYPTION 

 

Following fig. 1 gives idea about how data can be shared 

using key-aggregate encryption. 

 
Fig 1 System architecture [1] 

 

Supreme goal of KAC is to securely share the data. The 

key aggregation is an important aspect particularly when 

we expect the task of rendering access rights to be 

economical and versatile. In KAC, one can share the 

knowledge data content in a very confidential and 

selective means, with a set of enciphered text, by 

distributing to every approved and authenticated user one 

fusedkey. 
 

Data sharing in KAC scheme, illustrated in Figure one. 

Suppose Alice puts her knowledge m1, m2,...., mn on the 

server and now she is willing to share her data. She 

initially opt to perform Setup() to induce set up 

connection. After the secrete key is induced, the message 

„m‟ is converted into cipher message. The enciphered 

knowledge-data measure uploaded to the server. Alice will 

update/maintain Alice‟s knowledge content on the server. 

Once Alice(data owner) is willing to share a collection S 

of her knowledge to someone, say Bob, she will make the 

aggregate key for Bob. once it is ready it can be handed 

over to Bob through secure channel after which he can 

transfer the document contents he is allowed to go 

through. That is, every time index ϵ set of allowed indices, 

Bob is allowed to downloads and decipher the knowledge 

content from the server. 
 

Whomsoever is supposed to make use of this system will 

first have to create his account and register himself either 

as a data owner or a user. According to his current role in 

the system he can avail various associated privileges to 

that role.  

 

IV. IMPLEMENTATION IDEOLOGY 

 

Modules related to these schemes could be: 
 

Module1: (Data owner side) 

Data owner who is willing to upload, update and share 

knowledge set will create his account first and authenticate 

himself by user_id or user_name and password. i.e. Setup. 

Now the particular person is in the role of data owner, and 

hence he can avail services like file upload, view file, 

update file etc. 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 4, April 2016 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2016.54127                                    513 

Besides that he will encrypt the data and will have to 

generate a key for the same to encipher(KeyGen). At the 

time he is requested to share his data instead of  no of keys 

he will make an mixture key(agg.key) and deploy the 

same through some secure medium like email. (Extract) 
 

Module2: (User side) 

User is one how is requesting data owner to share his 

knowledge set, now as the particular person is in user role, 

he will have to create an account and authenticate himself 

first(using user_name and password). 

He will use the received  agg.key and the set of indices to 

decrypt the files he is allowed to go through. Likewise he 

will decipher the data set  and can download the content. 

Here both i.e. data owner and user are nothing but only the 

roles. And these roles are purely interchangeable ,a data 

owner can be a user at times and a user can be a data 

owner when he is generating an agg.key. 

 

The phases are as follows: 
 

 Setup: performed by the data owner to perform setup 

 KeyGen: performed by data owner to induce the key 

 Encrypt: by data owner to encipher knowledge content 

 Extract: performed to induce master key 

 Decrypt: performed by the user to decipher allowed 

set of knowledge-content. 

 

 
Fig. 2   Graph (no.file v/s no of keys) 

 

Here in above graph shows that when one to one approach 

is adapted, no of keys generated are equal in no as that of 

files, i.e. one key for one file, which is not feasible for one 

to handle and share as well. 

Whereas when key-agg. Encryption is adapted, no of keys 

generated/deployed is only one due to aggregation of keys 

performed. Here it is seen that no of keys are decreased to 

a great extent due to key aggregate encryption. 

 

V. CONCLUSION 

 

Users‟ knowledge (content/data) privacy indeed a central 

question of cloud storage. In this, we emphasize 

Compression of the secret keys in cryptosystems that 

support various cipher text categories in cloud storage. It 

could be any one of the ability set of categories, no issues; 

the delegatee will forever get combination key of constant 

size. In cloud storage, the quantity of cipher texts 

sometimes grows apace with none restrictions. Therefore 

we've to order enough cipher text categories for the longer 

term extension. Otherwise, we should expand the owner-

key.  

 

ACKNOWLEDGMENT 

 

The authors herein thank the publishers, researchers for 

making their resources available, as well as professors for 

their advice and proper guidance. We also thank the 

college/institute authority for providing us the desired 

infrastructure and their honest support. 

 

REFERENCES 

 
[1] Cheng-Kang Chu, Sherman S. M, “Key Aggregate Cryptosystem 

for Scalable Data Sharing in cloud storage”, IEEE Transactions on 

Parallel and Distributed Systems, vol. 25, issue2, 2014. 

[2] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient 
Controlled Encryption: Ensuring Privacy of Electronic Medical 

Records,” in Proceedings of ACM Workshop on Cloud Computing 

Security (CCSW ‟09). ACM, 2009, pp. 103–114. 
[3] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based 

Encryption for Fine-Grained Access Control of Encrypted data,” in 

Proceedings of the 13th ACM Conference on Computer and 
Communications Security (CCS ‟06). ACM, 2006, pp. 89–98. 

[4] F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity Single-Key 

Decryption without Random Oracles,” in Proceedings of 
Information Security and Cryptology (Inscrypt ‟07), ser. LNCS, 

vol. 4990. Springer, 2007, pp. 384–398. 

[5] M. Chase and S.S.M. Chow, “Improving Privacy and Security in 
Multi-Authority Attribute-Based Encryption,” Proceeding ACM 

Conference on Computer and Communication Security, pp. 121-

130. 2009. 
[6] S. G. Akl and P. D. Taylor, “Cryptographic Solution to a Problemof 

Access Control in a Hierarchy,” ACM Transactions on Computer 

Systems (TOCS), vol. 1, no. 3, pp. 239–248, 1983. 
[7] G. C. Chick and S. E. Tavares, “Flexible Access Control with 

Master Keys,” in Proceedings of Advances in Cryptology – 
CRYPTO ‟89, ser. LNCS, vol. 435. Springer, 1989, pp. 316–322. 

[8] W.-G. Tzeng, “A Time-Bound Cryptographic Key Assignment 

Scheme for Access Control in a Hierarchy,” IEEE Transactions on 
Knowledge and Data Engineering (TKDE), vol. 14, no. 1, pp. 182–

188, 2002.  

[9] R. S. Sandhu, “Cryptographic Implementation of a Tree Hierarchy 

for Access Control,” Information Processing Letters, vol. 27, no. 2, 

pp. 95– 98, 1988. 

[10] Y. Sun and K. J. R. Liu, “Scalable Hierarchical Access Control in 
Secure Group Communications,” in Proceedings of the 23th IEEE 

International Conference on Computer Communications 

(INFOCOM ‟04). IEEE, 2004.  
[11] D. Boneh and M. K. Franklin, “Identity-Based Encryption from the 

Weil Pairing,” in Proceedings of Advances in Cryptology – 

CRYPTO ‟01, ser. LNCS, vol. 2139. Springer, 2001, pp. 213–229. 
[12] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” in 

Proceedings of Advances in Cryptology - EUROCRYPT ‟05, ser. 

LNCS, vol. 3494. Springer, 2005, pp. 457–473. 
[13] S. S. M. Chow, Y. Dodis, Y. Rouselakis, and B. Waters, “Practical 

Leakage-Resilient Identity-Based Encryption from Simple 

Assumptions,” in ACM Conference on Computer and 
Communications Security, 2010, pp. 152–161. 

 

 


